Adenosine Signaling Mediates Osteogenic Differentiation of Human Embryonic Stem Cells on Mineralized Matrices

نویسندگان

  • Vikram Rao
  • Yu-Ru V. Shih
  • Heemin Kang
  • Harsha Kabra
  • Shyni Varghese
چکیده

Human embryonic stem cells (hESCs) are attractive cell sources for tissue engineering and regenerative medicine due to their self-renewal and differentiation ability. Design of biomaterials with an intrinsic ability that promotes hESC differentiation to the targeted cell type boasts significant advantages for tissue regeneration. We have previously developed biomineralized calcium phosphate (CaP) matrices that inherently direct osteogenic differentiation of hESCs without the need of osteogenic-inducing chemicals or growth factors. Here, we show that CaP matrix-driven osteogenic differentiation of hESCs occurs through A2b adenosine receptor (A2bR). The inhibition of the receptor with an A2bR-specific antagonist attenuated mineralized matrix-mediated osteogenic differentiation of hESCs. In addition, when cultured on matrices in an environment deficient of CaP minerals, exogenous adenosine promoted osteogenic differentiation of hESCs, but was attenuated by the inhibition of A2bR. Such synthetic matrices that intrinsically support osteogenic commitment of hESCs are not only beneficial for bone tissue engineering but can also be used as a platform to study the effect of the physical and chemical cues to the extracellular milieu on stem cell commitment. Insights into the cell signaling during matrix-induced differentiation of stem cells will also help define the key processes and enable discovery of new targets that promote differentiation of pluripotent stem cells for bone tissue engineering.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biomineralized matrix-assisted osteogenic differentiation of human embryonic stem cells.

The physical and chemical properties of a matrix play an important role in determining various cellular behaviors, including lineage specificity. We demonstrate that the differentiation commitment of human embryonic stem cells (hESCs), both in vitro and in vivo, can be solely achieved through synthetic biomaterials. hESCs were cultured using mineralized synthetic matrices mimicking a calcium ph...

متن کامل

Naringin enhances osteogenic differentiation through the activation of ERK signaling in human bone marrow mesenchymal stem cells

Objective(s): Naringin has been reported to regulate bone metabolism. However, its effect on osteogenesis remains unclear. The aim was to investigate the effect of naringin on osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) through the activation of the ERK signaling pathway in osteogenic differentiation. Materials and Methods: Annexin V-FITC assay and MTT assay ...

متن کامل

Calcium phosphate-bearing matrices induce osteogenic differentiation of stem cells through adenosine signaling.

Synthetic matrices emulating the physicochemical properties of tissue-specific ECMs are being developed at a rapid pace to regulate stem cell fate. Biomaterials containing calcium phosphate (CaP) moieties have been shown to support osteogenic differentiation of stem and progenitor cells and bone tissue formation. By using a mineralized synthetic matrix mimicking a CaP-rich bone microenvironment...

متن کامل

Induction of Human Embryonic Stem Cells into neuronal differentiation by increasing cyclic Adenosine Mono Phosphate

Introduction: To evaluate the cAMP -mediated IBMX (3-IsoButyle -1-Methyl Xanthin) and db-cAMP (dibutyryl cAMP) effects on differentiation of human Embryonic Stem Cells (hESCs) into nerve cells were the objectives of this study. Methods: We have used Royan H1 hESC- derived embryoid bodies with four treatment groups: six days treatment with IBMX (5×10 -4M) and db-cAMP (10 -9M) (referred to as...

متن کامل

Review Paper: Embryonic Stem Cell and Osteogenic Differentiation

Bone tissue engineering has been one of the most promising areas of research, providing a potential clinical application to cure bone defects. Recently, various stem cells, including embryonic stem cells (ESCs), bone marrow-derived mesenchymal stem cells (BM-MSCs), umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs), adipose tissue-derived stem cells (ADSCs), muscle-derived stem cell...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2015